
A REFINED PRODUCT MODEL FOR SHIELD TUNNELS BASED ON A

GENERALIZED APPROACH FOR ALIGNMENT REPRESENTATION

Julian Amann1, André Borrmann2, Felix Hegemann3, Javier R. Jubierre1, Matthias Flurl4, Christian Koch5,

Markus König6

1) Ph.D. student, Chair of Computational Modeling and Simulation, Technische Universität München, Munich, Germany.

2) Dr.-Ing., Prof., Chair of Computational Modeling and Simulation, Technische Universität München, Munich, Germany.

3) Ph.D. student, Chair of Computing in Engineering, Ruhr Universität Bochum, Bochum, Germany.

4) Ph.D. student, Chair of Computation in Engineering, Technische Universität München, Munich, Germany.

5) Dr.-Ing., Chair of Computing in Engineering, Ruhr Universität Bochum, Bochum, Germany.

6) Dr.-Ing., Prof., Chair of Computing in Engineering, Ruhr Universität Bochum, Bochum, Germany.

Abstract: For realizing data exchange in the context of the planning and realization of large infrastructure

projects, a comprehensive neutral data model capable of presenting both semantic as well as geometric aspects is

necessary. The Industry Foundation Classes (IFC) provide a full-grown and standardized product model for the

design and engineering of buildings. In the infrastructure sector, a comparably powerful data exchange solution

is still missing. To fill this gap, this paper presents an alignment model which is based on the IFC data model

and can be used as a data exchange standard for the design and maintenance of linear infrastructure facilities

such as roads, bridges and tunnels. This paper presents a detailed account of the results of our data modeling

activities. In particular, we demonstrate the use of the alignment sub-model by integrating it with a refined

version of an existing shield tunnel product model. The proposed product model provides semantic entities,

models the relationships between the physical objects and makes extensive use of the space aggregation concept

inherited from standard IFC.

Keywords: Infrastructure, data exchange, alignment, IFC, tunnel product model

1. INTRODUCTION & MOTIVATION

There is a great need for data exchange in the architecture, engineering and construction (AEC) industry.

A study from NIST in 2004 showed that more than 15.8 billion dollars are wasted each year due to insufficient

data exchange in building projects (Venugopal et al. 2012). A proportionally similar amount of money wastage

is likely in the field of infrastructure projects.

At present, there is very limited data exchange support for infrastructure elements such as roads, bridges

or tunnels. For building construction, however, the Industry Foundation Classes (IFC) (buildingSMART 2013)

have already become established as a mature standard. Something similar is currently lacking in the

infrastructure sector. In this paper we describe, an alignment model that supports the well-established approach

of aligning design based on vertical and horizontal alignments. The model supports also 3D space curves for

alignments, which can be used, for instance, for alignment recording by GPS. We show how the IFC 4 standard

can be extended with our alignment model. Furthermore, we describe how the alignment data model can be

interconnected with an extended shield tunnel product model.

2. BACKGROUND

2.1 Related work

IFC-Bridge is an extension of the IFC Standard which is currently in ongoing development (Yakubi et

al. 2006; Lebegue et al. 2012). It extends the current IFC data product model to include items of bridge design. A

crucial part of the bridge design is the alignment curve. For this, the authors introduce an

IfcReferenceCurveAlignment2D element which references a horizontal and a vertical alignment curve. For both

the horizontal and vertical alignment, an IfcCurve element is used. Since IfcCurve is very general, it allows many

different types of descriptions of curves, which makes it hard for software application implementers to handle all

types and combinations of curve types. For example, editing the start or end radius of a clothoid is also difficult

if it is described by arbitrary curve elements.

LandXML (Harrison & Ziering, 2007) is a standard that is targeted at road design. It is based on the

Extensible Markup Language (XML) (Bray et al. 2006). Besides the alignment, it also offers the ability to store

cross-sections of the corresponding road and offers a digital elevation model in the form of a triangle net.

LandXML instance files can be validated against the LandXML schema definition (XSD). With the help of

LandXML XSD, LandXML instance files can be checked for syntax errors. With the change from LandXML

schema 1.1 to 1.2, it has been a main target to preserve downwards compatibility; meaning that a LandXML 1.1

reader can still read LandXML 1.2 instance files. As a consequence, the introduced modifications appear only on

the content level of the XML instance file and do not have an impact on the structural level of the XML schema.

However, this approach opened the door for misuse of the standard and results, for instance, in several different

interpretations and uses of various variants for defining cross sections.

IFC-Tunnel is supposed to become an extension of the IFC Standard which provides data structures

for tunnel buildings. It is mainly driven by German IFC Tunneling Project (Hegemann et al. 2012) and the

Japanese Shield-Tunnel Project (Yabuki et al. 2007, Yabuki 2008). Neither of these works focuses on an

alignment model. This paper closes this gap.

2.2 Objectives

This paper describes a generalized IFC 4 based alignment model that can be used in the field of

infrastructure to describe road, tunnel and bridge alignments. In addition, we show how the proposed alignment

model can be integrated in a refined version of an existing shield tunnel product model. The demonstrated model

can be easily extended and used in other infrastructure domains such as bridge or road design. A proposal of an

extended IFC 4 standard is also given and it is shown how it can be mapped to existing IFC 4 elements.

3. AN IMPROVED ALIGNMENT DATA STRUCTURE

3.1 Requirements for alignment data structure

An alignment data structure has to fulfill several requirements to be useful for infrastructure modeling.

Since the user should be provided with the possibility to apply the well-established approach of using horizontal

and vertical alignments besides directly storing a 3D curve, the corresponding vertical and horizontal alignment

elements need to be stored.

The data structure must be able to support the drawing and modification of horizontal and vertical

alignments. Moreover, it needs to be possible to generate a 3D space curve based on these alignment

representations. Furthermore, it needs to be simple for software developers to adapt and integrate the alignment

product data model to their software products. Since the presented alignment data model is based on the IFC 4

standard, it should re-use as many data structures from the existing standard as possible and should not duplicate

data structures already present. The alignment data product model should also contain only necessary data and

not data that can be derived. Additional data such as the current kilometrage also need to be included in the data

model.

Figure 1 shows the data that is sufficient to reconstruct and edit different horizontal alignment segments

of our test data. A horizontal alignment consists of horizontal alignment segments like straight line segments,

circle segments (arcs) and transition curves. Since only clothoids are used as transition curves, only clothoids are

provided in the data model. In this view (Figure 1), only the data that is needed for one specific horizontal

alignment segment is considered without the knowledge of other horizontal alignment segments. It will be

shown later how horizontal alignment segments can be connected. It is important for the requirements of an

alignment model that it needs to be possible to connect different alignment segments and it also needs to be

possible to provide a unique chainage.

Figure 1. UML class diagram showing the requirements for the horizontal alignment data model.

For straight lines, the start and corresponding endpoints need to be stored. A circle segment (arc) can be

described by its start, end and center point. Additionally, the rotation order (clockwise or counter clockwise)

needs to be included. For clothoids, the start, end and point of intersection must be stored. The length of the

clothoid, the start and end radius and rotation order also have to be stored. The length of the clothoid can be used

to calculate the clothoid constant. Given this information, a horizontal alignment can be constructed as can be

seen in Figure 2.

The line segments of the horizontal alignment can be used to compute intersection points. Thereby two

successive line segments become prolonged and their point of intersection (PI) gets computed. This point is

usually used to modify a track model. The PI can be moved. Afterwards, the lines are modified according to the

movement of the PI. Eventually, the parameters of interjacent non line segment are computed so they match the

new start and end point of the moved lines segments.

The vertical alignment is constructed by line segments which describe the gradient in the height field of

the underlying terrain (elevation model), vertical intersection points which describe the intersection of these line

segments and roundings between the vertical alignment segments. Figure 3 shows which data is needed to store a

vertical intersection. For roundings, only parabolas are used.

Figure 2. Line segments (red), arcs (green) and clothoids (blue)

Figure 3. UML class diagram showing the requirements for the vertical alignment data model.

 Figure 4 demonstrates how a vertical alignment can be constructed from the previously described data

model. From the intersection point distance (distance between the point PVC and PVT) and the vertical

intersection point of the parabola, the corresponding points PVC and PVT can be computed. The final computed

vertical alignment consists of line segments and parabolas. The vertical alignment is a development drawing of a

corresponding horizontal alignment. This requires the alignment data model to store also the correlation of the

horizontal and vertical alignment. So another requirement is the correlation of the two alignments and that it is

possible to compute a 3D space curve from both alignments.

Figure 4. A vertical alignment.

3.2 A proposal for a new alignment data structure

In the previous section we discussed which requirements an alignment model has to fulfill. In this

section we present the realization of an alignment model that actually meets those requirements.

First we consider an alignment in its top-level view. An alignment can be a 3D reference curve or a 2D

alignment consisting of a horizontal and a vertical alignment. For the latter, some implementation defined

restrictions have to be characterized. A horizontal alignment does not contain any junctions or gaps. Junctions

are forbidden as a connection with a vertical alignment would thus be impossible. In the case of a junction, it is

not clear how a proper vertical alignment can be developed. Gaps in a horizontal alignment are also not allowed

because in this case we would also have to store this gap in the vertical alignment which would only make the

data model more complicated. For junctions and gaps, another alignment with its own horizontal and vertical

alignment has to be created. So instead of creating an alignment with a horizontal and a vertical alignment with a

gap, we create two alignments each with its own junction and gap free horizontal and vertical alignment. This

restriction simplifies the presented data model and does nevertheless support gaps and junctions. Since the

introduced horizontal alignment and also the vertical alignment are gap free, the end point of an alignment

segment is always the start point of a following alignment segment. So the same point is referenced two times,

one time as start- and another time as endpoint. But this is acceptable considering the memory consumption

(references are cheap). Moreover, storing just one reference would make the model cumbersome to use.

From the horizontal and vertical alignment, a 3D space curve can be computed. In the simple case where

the horizontal and vertical alignments have the same length, the corresponding chainage in the horizontal and

vertical alignment just have to be found. If the vertical alignment has a different length, it is not invalid. A

proportionality factor will be computed and the vertical alignment will be sized so it has the same length as the

horizontal alignment. The horizontal alignment stores also the start chainage. The following chainages can be

computed by summing up the different lengths of the horizontal alignment segments.

Figure 5 shows an overview of the proposed alignment data structure. On the top level there is the

IfcReferenceCurve element. The model supports a 3D space curve (IfcReferenceCurve3D) as well as the

traditional approach of horizontal and vertical alignments (IfcReferenceAlignment2D). The

IfcReferenceAlignment2D consist of a gap and junction free horizontal (IfcHorizontalAlignment) and vertical

alignment (IfcVerticalAlignment). The IfcHorizontalAlignment consist of an order list of IfcHorizontal-

AlingmentSegments. An IfcHorizontalAlingmentSegment is a superclass of IfcHorizontalAlignmentLine for line

segments, IfcHorizontalAlignmentCircularSegment for circle segments and IfcHorizontalAlignmentTransiton-

Curve for transition curves. The only supported transition curve is the IfcHorizontalAlignmentClothoid for a

clothoid.

Figure 5. EXPRESS G-Diagram giving an overview of the proposed alignment data structure.

 The vertical alignment is stored in the IfcVerticalAlignment element. It consists of an ordered list

IfcVerticalAlignmentSegments such as IfcVerticalAlignmentPointVerticalIntersection and IfcVertical-

AlignmentRounding. An IfcVerticalAlignmentRounding has only one subclass (IfcVerticalAlignmentParabola).

A horizontal alignment line segment can be described by a trimmed curve (IfcTrimmedCurve) that is

using an IfcLine as a basis curve. The start point is used as the origin of the IfcLine and the difference vector

between the end- and start point is used as direction vector. The first and second trim points can be set to the start

and end of the corresponding line. The horizontal alignment circular segment also uses a trimmed curve.

IfcCircle is used as a basis curve for the trimmed curve. The first and the second trim point are again set to the

start and end point of the arc. The IfcTrimmedCurve offers a sense agreement which can be used to store if the

circle is clockwise or counterclockwise. A horizontal alignment clothoid curve segment also has a start and an

end point. These points are stored again in the first and the second trim point of the IfcTrimmedCurve. The sense

argument of the trimmed curve is again used to store the rotation sense of the clothoid. Currently, there is no

IfcClothoid curve in the IFC standard which can be used as a basis curve. An IfcClothoid element can easily be

introduced in the IFC standard to circumvent this problem. Table 1 shows in detail the mapping of the horizontal

alignment line and circle segment to an ASCII STEP file.

Table 1. Mapping of alignment segments to IFC4/STEP

IfcHorizontalAlignmentLine IfcHorizontalAlignmentCircularSegment

#2=IFCHORIZONTALALIGNMENTLINE(#3);

#3=IFCTRIMMEDCURVE(#4,(#8),(#9),,$);

#4=IFCLINE(#5,#6);

#5=IFCCARTESIANPOINT((1031.95,1177.96));

#6=IFCVECTOR(#7,1);

#7=IFCDIRECTION((76.1796,252.095));

#8=IFCCARTESIANPOINT((1031.95,1177.96));

#9=IFCCARTESIANPOINT((1108.13,1430.06));

#11=IFCHORIZONTALALIGNMENT

CIRCULARSEGMENT(#12);

#12=IFCTRIMMEDCURVE(#13,(#16),(#17),.T.,$);

#13=IFCCIRCLE(#14,86.6106);

#14=IFCAXIS2PLACEMENT2D(#15,$);

#15=IFCCARTESIANPOINT((1254.2,1394.62));

#16=IFCCARTESIANPOINT((1113.24,1445.92));

#17=IFCCCARTESIANPOINT((1165.1,1515.29));

In contrast to the proposal contained in IFC-Bridge (Arthaud and Lebegue, 2012), the 2D horizontal

alignment does not only reference to an IfcCurve element. Instead, we decided to introduce a semantic level.

Usually horizontal aligning design is based on line segments, circular arcs and transition curves (clothoids). The

presented model reflects this semantic level. The advantage of this model is that it is more practical for

modification. In a typical use case where a construction engineer modifies an alignment, he or she wants to

select the intersection points of the alignment and move them by drag and drop as shown in Figure 6.

Figure 6. Modifying a horizontal alignment.

Modifying an alignment can be easily achieved with the data model presented here. Given the

horizontal alignment segments, the intersection points can be easily computed. With IFC-Bridge, the alignment

is described by a complex IfcCurve and a corresponding software implementation has therefore be able to handle

all different types and kinds of IfcCurves configurations. Because there are different ways to describe a semantic

line segment with the help of IfcCurve, the software needs to be able to handle each different way. Things get

more difficult if a spline is used in the horizontal alignment of IFC-Bridge that has a straight part. This straight

part is in fact a line segment with intersection points. This makes the IFC-Bridge alignment model impractical

for modifications.

3.3 Computation of vertical alignments

The start point of a vertical alignment is a so called point of vertical intersection. This name is chosen

because connected points of vertical intersection describe gradient lines. Typically, a construction engineer drafts

these lines first and then replaces the discontinuous transitions with roundings, which are typically parabolas.

From the intersection points and the distance of the left PVC and right PVT point (see Figure 4) the PVT and

PVC can be calculated. First the slope m of the first line segment (PointVerticalIntersction.point to

Parabola.pointVerticalIntersection) is computed. Given the PVI point of the parabola and the slope m, the

y-intercept can be calculated. The length between the PVT and PVC is called the parabola span. The x-value of

PVT can be computed by Equation (1). The corresponding y-coordinate can then also be calculated.

𝑃𝑉𝑇. 𝑥 = 𝑃𝑉𝐼. 𝑥 − 0.5 ∗ 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎𝑆𝑝𝑎𝑛 (1)

After computing these points, the vertical alignment can be viewed in terms of line segments and

parabolas instead of points of vertical intersections and roundings. While the latter view is effectively more

useful when a 3D space curve needs to be computed from the horizontal and vertical alignment, the intersection

points are very important for editing a vertical alignment. For this reason, this approach has been chosen to store

the vertical alignment data.

4 INTEGRATION INTO A SHIELD TUNNEL PRODUCT MODEL

4.1 Overview

The tunnel product data model proposed here (see Figure 7) is a refined version of the shield tunnel

product model originally introduced by Yabuki et al. (2007). The model provides a fine-grained semantic model

that precisely models the relationships between the physical objects and makes extensive use of the space

aggregation concept inherited from standard IFC.

Figure 7. Proposed shield tunnel product model

In order to show the applicability of the proposed alignment model for modelling linear infrastructure

facilities, we discuss its integration with a semantic shield tunnel product model. In contrast to the very fine

grained class model presented in (Yabuki 2008), which introduces a large number of new classes, we restrict the

extensions in the model proposed here to only six new classes. This is in accordance with the general principles

of product modeling which aims to achieve maximum expressivity with minimum modeling effort.

In analogy to the space structure capabilities provided by standard IFC for buildings, we introduce the

classes IfcTunnel (which corresponds to IfcBuilding) and IfcTunnelPart (which corresponds to

IfcBuildingStorey), both modeled as subclasses of IfcSpatialStructureElement. In addition, the IFC class

IfcSpace is sub-classed by the more specific IfcTunnelSpace. However, instead of undertaking a further

sub-classing of IfcTunnelSpace, we make use of the enumeration attribute type to specify the particular space

type present (FullTunnelSpace, InteriorSpace, AnnularGapSpace, LiningSpace, ClearanceSpace, ServiceSpace,

FloorSpace, Ring). In a concrete tunnel model, instances of IfcTunnel, IfcTunnelPart and IfcTunnelSpace are

arranged in an aggregation hierarchy as depicted in Figure 8.

For representing physical elements of the shield tunnel, we introduce the class IfcTunnelElement as a

subclass of IfcElement. IfcTunnelElement is in turn subclassed by RingSegment and IfcTunnelInstallation. For

the latter, we again provide the enumeration attribute type to specify the particular installation described

(Walkway, TrafficLight, TrackbedConcrete, TrackbedRails, CableDuct, Drainage). The physical objects are

associated with the respective space objects via relationship objects of type IfcRelContainedInSpatialStructure

(see Figure 8). The semantics of the individual elements are illustrated in Figure 9.

Due to the tunnel’s nature of being a linear infrastructure facility, the geometry of large parts of its

comprising objects can be represented by an extrusion of a profile along the tunnel axis. In particular, this

applies to the IfcTunnelSpace objects and the IfcTunnelElement objects. (Please note that IfcRingSegment cannot

be modeled by means of an extruded geometry.)

Figure 8: Instance diagram presenting the space aggregation hierarchy. Elements depicted in dark blue represent

instances of IfcTunnelSpace using the type attribute for specifying the respective type. Elements depicted in dark

green are instances of IfcTunnelInstallation.

Figure 9. Illustration of the semantics of the individual elements of the proposed shield tunnel product model.

For representing the geometry of the respective space and tunnel element objects, it is made use of the

entity IfcSurfaceCurveSweptAreaSolid provided as part of the standard IFC. Using the attribute Directrix it is

possible to assign an IfcCurve object, which is used as sweeping path. In this case, the tunnel’s axis is used for

this purpose. The swept area is provided by a subtype of IfcProfileDef via the attribute ReferenceSurface. For

most objects, IfcArbitraryClosedProfileDef is most appropriate for modelling the cross-section profile. Its

OuterCurve attribute allows association of any IfcCurve object.

4.2 Tunnel alignment

To store the relationship between the IfcTunnel entity and the alignment model, an IfcTunnelAxis is

introduced. The IfcTunnel entity references this IfcTunnelAxis. Again IfcTunnelAxis references to an

IfcReferenceCurve which describes the alignment of the tunnel using the traditional approach of a horizontal and

a vertical alignment (IfcReferenceCurveAlignment2D) or a 3D space curve (IfcReferenceCurve). The tunnel axis

is used as an extrusion path for the tunnel profile. To find out how long a specific element of a tunnel profile has

to be extruded, we store the stationing of each tunnel element in the IfcTunnelAxis entity. This enables us to

automatically generate a new tunnel from the description, including internal elements such as traffic lights, when

the alignment of the tunnel is changed.

AnnularGapSpace

CableDuct

Drainage

TrackBedConcrete

TrackBedRails

IfcRingSegment

TrafficLight

LiningSpace

FullTunnelSpace

InteriorSpace

Walkway

Ring

IfcTunnelPart

IfcProject IfcSite

IfcTunnel

IfcRelAggregates

IfcRelAggregates

IfcRelAggregates

ClearanceSpace

FloorSpace

TrackSpace

ServiceSpace

IfcRelAggregates

IfcRelAggregates

IfcRelAggregates

IfcRelAggregates IfcRelContainedInSpatialStructure

InteriorSpace

LiningSpace

FullTunnelSpace

AnnularGapSpace

ClearanceSpace

TrackSpace

ServiceSpace

FloorSpace

Traffic Light

Trackbed Concrete

RingSegment

Walkway

Floor Concrete

5 VALIDATION

To validate the proposed approach, the tunnel product model is implemented in the IFC-compatible

visualization tool Open IFC Tools. Open IFC Tools is a fully object-oriented Java-based application which can

be used to read and write IFC STEP files. Figure 10 shows a part of a generated tunnel model imported by means

of an IFC STEP file. To model the tunnel, the presented IFC-based modeling approach has been applied. On the

right side of the figure, the structure and the hierarchy of the tunnel model can be seen. On the left side, the

visualization of the model is presented. This shows that the approach presented here can be applied in IFC

compatible software tools which implement the IFC Tunnel extension presented here.

Figure 10: Tunnel model loaded into Open IFC Tools

6 CONCLUSION & FUTURE WORK

In this paper we demonstrated an approach for storing alignment data that is based on an extension of

the IFC4 standard. The proposed alignment structure can be easily extended with new transition curves or

roundings if needed. We also discussed how to integrate the suggested alignment structure in a tunnel product

model. The alignment model shown is very versatile and can also be integrated in other IFC-based infrastructure

extensions such as IFC-Bridge.

In a future development, other aspects of alignment design can also be taken into consideration such as

the underlying terrain or the required ground work. Even though there are existing standards such as LandXML

or GroundXML (Obergrießer 2009), an IFC extension targeted for infrastructure projects seems very promising.

REFERENCES

buildingSMART. (2013). Industry Fondation Classes IFC4 Official Release, buildingSMART

http://www.buildingsmart-tech.org
Bray, T., Paoli, J. Sperberg-MCQueen, C. M., Maler, E. and Yergau, F. (2013): Extensible Markup Language

(XML) 1.0 (Fourth Edition). World Wide Web Consortium,

http://www.w3.org/TR/2006/REC-xml-20060816/#sec-origin-goals. 2006.

Harrison F. D. and Ziering E. (2007) National Research Council. NCHRP Report 576: TransXML: XML

Schemas for Exchange of Transportation Data. Washington, DC: The National Academies Press, 2007.

Hegemann, F., Lehner K., König, M. (2012), IFC-based product modeling for tunnel boring machines, Proc. of

European Conference on Product and Process Modeling, Reykjavik, Island

Lebegue, E., Fiês, B. and Gual, J., (2012). IFC-Bridge V3 Data Model – IFC 4, Edition R1.

Obergrießer M., Ji Y., Baumgärtel T., Euringer T., Borrmann A., and Rank E. (2009). GroundXML - An

addition of alignment and subsoil specific cross-sectional data to the LandXML scheme

In: Proc. of the 12th International Conference on Civil, Structural and Environmental Engineering

Computing. Madeira, Portugal.

Venugopal, M., Eastman, C., and Teizer, J. (2012) An Ontological Approach to Building Information Model

Exchanges in the Precast/Pre-Stressed Concrete Industry. Construction Research Congress.

Yabuki, N., Lebeque, E., Gual, J., Shitani, T. and Li, Z. T., (2006). International Collaboration for Developing

the Bridge Product Model IFC-Bridge, In Proc. Of the International Conference on Computing and

Decision Making in Civil and Building Engineering.

Yabuki, N., Azumaya, Y., Akiyama, M., Kawanai Y., Miya, T. (2007): Fundamental Study on Development of a

Shield Tunnel Product Model. Journal of Civil Engineering Information Application Technology 16, pp.

261-268

Yabuki, N. (2008). Representation of caves in a shield tunnel product modeling. In Proc. of the 7th European

Conference on product and Process Modeling. Sophia Antipolis, France.

http://www.buildingsmart-tech.org/
http://www.w3.org/TR/2006/REC-xml-20060816/#sec-origin-goals

